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  ABSTRACT 
 

Molecular markers offer numerous advantages over conventional phenotype based alternatives as they are stable and 

detectable in all tissues regardless of growth, differentiation, development, or defense status of the cell are not confounded 

by the environment, pleiotropic and epistatic effects. Functional markers (FMs) are a good “translator” of gains from 

emerging technologies into improved crop cultivars. FMs are derived from polymorphic sites within genes causally 

involved in phenotypic trait variation. Once genetic effects have been assigned to functional sequence motifs, FMs 

derived from such motifs are used for fixation of gene alleles in a number of genetic backgrounds without additional 

calibration. FM development requires(1) functionally characterised genes, (2) allele sequences from such genes, (3) 

identification of polymorphic, functional motifs affecting plant phenotype within these genes and (4) validation of 

associations between DNA polymorphisms and trait variation. 
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Introduction 
 

Conventional plant breeding is primarily based on 

phenotypic selection of superior individuals among 

segregating progenies resulting from hybridization. 

Although significant strides have been made in crop 

improvement through phenotypic selections for 

agronomically important traits, considerable 

difficulties are often encountered during this 

process, primarily due to genotype-environment 

interactions. Besides, testing procedures may be 

many times difficult, unreliable or expensive due to 

the nature of the target traits (e.g. abiotic stresses) or 

the target environment. With the advent of DNA 

marker technology, several types of and molecular 

breeding strategies are now available to plant 

breeders and geneticists, helping them to overcome 

many of them the problems faced during 

conventional breeding. Markers that reveal 

polymorphisms at the DNA level are known as  
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molecular markers. The last two have witnessed a  

remarkable activity in the development and use of 

molecular markers both in animal and plant systems. 

This activity started with low-throughput restriction 

fragment length polymorphisms and culminated in 

recent years with single nucleotide polymorphisms 

(SNPs), which are abundant and uniformly 

distributed. There have been several reports of the 

potential applications of molecular markers to plant 

improvement (Burr et al. 1983; Helentjaris et al. 

1985; Beckman and Soller 1986). A molecular 

marker is defined as a particular segment of DNA 

that is representative of the differences at the 

genome level. Molecular markers may or may not 

correlate with phenotypic expression of a trait. 

Molecular markers offer numerous advantages over 

conventional phenotype based alternatives as they 

are stable and detectable in all tissues regardless of 

growth, differentiation, development, or defense 

status of the cell are not confounded by the 

environment, pleiotropic and epistatic effects. An 

increasing number of monogenic, race-specific 

genes showing a gene-for-gene interaction have been 

mapped, and agronomically important genes have 

been correlated to molecular markers, as 

demonstrated for potato in Table 1. For wheat, such 
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validated markers are available for resistance genes 

against powdery mildew (Pm1c, Pm17, Pm24, 

mlRD30), the yellow dwarf virus, the cyst 

nematodes (Cre1 and Cre3), and the rusts (Lr9, 

Lr21, Lr24, Lr38, Lr47; Sr38, Yr5, Yr17) and 

Fusarium head blight (Mohler and Singrun 2005). 

Presently, the most powerful application of such 

identified genes and molecular markers is opened up 

by MAS. It offers the opportunity of combining 

different genes for a given patho-system in a single 

genotype (gene pyramiding). A prerequisite for gene 

pyramiding is that characters are not allelic. 

Furthermore, knowledge on the gene distances in 

genetic or better physical maps is very helpful. 

Using such information, it was possible to combine 

three race-specific powdery mildew genes (Pm) in a 

single line which is now under variety test, hoping 

that such a pyramided resistance will be rather 

durable (Fig. 2). 

 

The publication of Botstein et al. (1980) about the 

construction of genetic maps using restriction 

fragment length polymorphism (RFLP) was the first 

reported molecular marker technique in the detection 

of DNA polymorphism. In RFLP, DNA 

polymorphism is detected by hybridizing a 

chemically labelled DNA probe to a Southern blot of 

DNA digested by restriction end nucleases, resulting 

in differential DNA fragment profile. This 

differential profile is generated due to nucleotide 

substitutions or DNA rearrangements like insertion 

or deletion or single nucleotide polymorphisms. The 

RFLP markers are relatively highly polymorphic, 

codominantly inherited and highly reproducible. 

Because of their presence throughout the plant 

genome, high heritability and locus specificity the 

RFLP markers are considered superior. The method 

also provides opportunity to simultaneously screen 

numerous samples. The technique is not very widely 

used because it is time consuming, involves 

expensive and radioactive/toxic reagents and 

requires large quantity of high quality genomic 

DNA. After the invention of polymerase chain 

reaction (PCR) technology (Mullis and Faloona 

1987), a large number of approaches for generation 

of molecular markers based on PCR were 

undertaken. The RAPD technique is based on PCR 

amplification of genomic DNA. It deduces DNA 

polymorphisms produced by ‘‘rearrangements or 

deletions at or between oligonucleotide primer 

binding sites in the genome’’ using short random 

oligonucleotide sequences (mostly ten bases long) 

(Williams et al. 1991). As the approach requires no 

prior knowledge of the genome that is being 

analyzed, it can be employed across species using 

universal primers. The major drawback of the 

method is that the profiling is dependent on the 

reaction conditions so may vary within two different 

laboratories and as several discrete loci in the 

 

Table 1 Some important and mapped DNA markers 
on the example of potato (Wenzel 2006). 
 

 

J of Biotech & Crop Sci (2015) 4(4): 64-82 

 



 

67 
 

Figure 2 Pyramiding of three powdery mildew genes by marker-assisted selection, resulting in an oligogenic resistance 

type which should be more durable (Wenzel, G. 2006). 

 

genome are amplified by each primer, profiles are 

not able to distinguish heterozygous from 

homozygous individuals (Bardakci 2001). Due to the 

speed and efficiency of RAPD analysis, high-density 

genetic mapping in many plant species such as 

alfalfa (Kiss et al. 1993), faba bean (Torress et al. 

1993) and apple (Hemmat et al. 1994) was 

developed in a relatively short time. The RAPD 

analysis of NILs (non-isogenic lines) has been 

successful in identifying markers linked to disease 

resistance genes in tomato (Lycopersicon sp.) 

(Martin et al. 1991), lettuce (Lactuca sp.) (Paran et 

al. 1991) and common bean (Phaseolus vulgaris)  

 

(Adam-Blondon et al. 1994). To overcome the 

limitation of reproducibility associated with RAPD, 

AFLP technology (Vos et al. 1995) was developed. 

It combines the power of RFLP with the flexibility 

of PCR-based technology by ligating 

primerrecognition sequences (adaptors) to the 

restricted DNA and selective PCR amplification of 

restriction fragments using a limited set of primers 

The AFLP technique generates fingerprints of any 

DNA regardless of its source, and without any prior 

knowledge of DNA sequence. Most AFLP 

fragments correspond to unique positions on the 

genome and hence can be exploited as landmarks in 

J of Biotech & Crop Sci (2015) 4(4): 64-82 
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genetic and physical mapping. The technique can be 

used to distinguish closely related individuals at the 

sub-species level (Althoff et al. 2007) and can also 

map genes. Applications for AFLP in plant mapping 

include establishing linkage groups in crosses, 

saturating regions with markers for gene landing 

efforts (Yin et al. 1999) and assessing the degree of 

relatedness or variability among cultivars (Mian et 

al. 2002). Single nucleotide variations in genome 

sequence of individuals of a population are known as 

SNPs. They constitute the most abundant molecular 

markers in the genome and are widely distributed 

throughout genomes although their occurrence and 

distribution varies among species. Maize has 1 SNP 

per 60-120 bp (Ching et al. 2002), while humans 

have an estimated 1 SNP per 1,000 bp 

(Sachidanandam et al. 2001). The SNPs are usually 

more prevalent in the non-coding regions of the 

genome. Within the coding regions, an SNP is either 

non-synonymous and results in an amino acid 

sequence change (Sunyaev et al. 1999), or it is 

synonymous and does not alter the amino acid 

sequence. Synonymous changes can modify mRNA 

splicing, resulting in phenotypic differences 

(Richard and Beckman 1995). Improvements in 

sequencing technology and availability of an 

increasing number of EST sequences have made 

direct analysis of genetic variation at the DNA 

sequence level possible (Buetow et al. 1999; 

Soleimani et al. 2003). Majority of SNP genotyping 

assays are based on one or two of the following 

molecular mechanisms: allele specific hybridization, 

primer extension, oligonucleotide ligation and 

invasive cleavage (Sobrino et al. 2005). High 

throughput genotyping methods, including DNA 

chips, allele-specific PCR and primer extension 

approaches make single nucleotide polymorphisms 

(SNPs) especially attractive as genetic markers. 

They are suitable for automation and are used for a 

range of purposes, including rapid identification of 

crop cultivars and construction of ultra high-density 

genetic maps. However, with the availability of 

microarrays, SNP platforms have been developed, 

which allow genotyping of thousands of markers in 

parallel. Besides SNPs, some other novel marker 

systems, including single feature polymorphisms, 

diversity array technology and restriction site-

associated DNA markers, have also been developed, 

where array-based assays have been utilized to 

provide for the desired ultra-high throughput and 

low cost. These microarray-based markers are the 

markers of choice for the future and are already 

being used for construction of high-density maps, 

quantitative trait loci (QTL) mapping (including 

expression QTLs) and genetic diversity analysis 

with a limited expense in terms of time and money. 

 

  

Functional Markers 

 

With the advent of high-throughput sequencing 

technology, abundant information on DNA 

sequences for the genomes of many plant species has 

been generated (Goff et al. 2002; The Arabidopsis 

Genome Initiative 2000; Yu et al. 2002). ESTs of 

many crop species have been generated and 

thousands of sequences have been annotated as 

putative functional genes using powerful 

bioinformatics tools. To gain benefits from plant 

J of Biotech & Crop Sci (2015) 4(4): 64-82 
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genomics, new knowledge must be “translated” into 

crop varieties with improved characteristics (Thro et 

al. 2004). Functional markers (FMs) are a good 

“translator” of gains from emerging technologies 

into improved crop cultivars. FMs are derived from 

polymorphic sites within genes causally involved in 

phenotypic trait variation. Once genetic effects have 

been assigned to functional sequence motifs, FMs 

derived from such motifs are used for fixation of 

gene alleles in a number of genetic backgrounds 

without additional calibration. FM development 

requires (1) functionally characterised genes, (2) 

allele sequences from such genes, (3) identification 

of polymorphic, functional motifs affecting plant 

phenotype within these genes and (4) validation of 

associations between DNA polymorphisms and trait 

variation (Chun et al. 2006). 

 

In order to correlate DNA sequence information 

with particular phenotypes, sequence-specific 

molecular marker techniques have been designed. 

Microsatellite or short tandem repeats or simple 

sequences repeats are monotonous repetitions of 

very short (one to five) nucleotide motifs, which 

occur as interspersed repetitive elements in all 

eukaryotic genomes (Tautz and Renz 1984). 

Variation in the number of tandemly repeated units 

is mainly due to strand slippage during DNA 

replication where the repeats allow matching via 

excision or addition of repeats (Schlotterer and 

Tautz 1992). As slippage in replication is more 

likely than point mutations, microsatellite loci tend 

to be hypervariable. Microsatellite assays show 

extensive inter-individual length polymorphisms 

during PCR analysis of unique loci using 

discriminatory primers sets. Expressed sequence tag 

(EST) projects have generated a vast amount of 

publicly available sequence data from plant species; 

these data can be mined for simple sequence repeats 

(SSRs). These SSRs are useful as molecular markers 

because their development is inexpensive, they 

represent transcribed genes and a putative function 

can often be deduced by a homology search. 

Because they are derived from transcripts, they are 

useful for assaying the functional diversity in natural 

populations or germplasm collections. These 

markers are valuable because of their higher level of 

transferability to related species, and they can often 

be used as anchor markers for comparative mapping 

and evolutionary studies. They have been developed 

and mapped in several crop species and could prove 

useful for marker-assisted selection. 

 

Approaches for the development of 

microsatellites markers 
 

SSRs are actually considered the most efficient 

markers, but their use is still limited because of the 

long and laborious steps to develop them. There are 

two general strategies to access these regions and 

create SSR markers: (1) searching for sequences 

containing microsatellites in the available data bases; 

or (2) constructing and screening the genomic (or 

other) library with probes complementary to 

microsatellite sequences. Exceptionally, some 

strategies without library construction have been 

developed. 

 

Data base searching is a cost effective tool for the 

development of SSR’s 
 

This strategy of developing SSR markers is based on 

searching for sequences containing microsatellites 

deposited in the data bases (EMBL, GenBank). This 

method is cost-effective, simple and relatively quick; 

however, it does show some limitations. It should be 

underlined that when exploring data from expressed 

sequences, a considerable amount of potential 

polymorphism can be lost, as microsatellites are 

broadly present in the non-coding regions of 

genomes. Additionally, this strategy is limited to 

plants with high economical or scientific interest 

which are well represented in the databases. In rice 

(Cho et al. 2000), showed that microsatellites 

derived from genomic libraries detected a higher 

level of polymorphism than those derived from 

ESTs contained in the GenBank database (83.8% vs. 

54.0%). The other measures of genetic variability, 

like the number of alleles per locus, polymorphism 

J of Biotech & Crop Sci (2015) 4(5): 4-22 
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information content, and allele size ranges, were 

higher in the case of the genomic library- than in that 

of the EST-derived microsatellites. Conversely, in 

rye, Hackauf and Wehling (2002) identified much 

more effective SSR loci when exploring EST data 

bases than Saal and Wricke (1999) who searched the 

genomic library. The authors examined more than 

8000 rye cDNA sequences from anthers, cold-

stressed leaves, and aluminium-stressed and 

unstressed roots. A total of 157 sequences out of 528 

SSRs comprising di-, triand tetra-nucleotide motifs 

turned out to be useful for primer design. One 

hundred EST-derived loci displayed a length 

polymorphism among 15 rye accessions. 

 

Cross species amplification leads to the 

development of SSR markers 
 

Cross species amplification is also a powerful 

approach to develop microsatellites markers in 

plants. Database searching is an economic approach 

for obtaining new microsatellite loci (Brown et al. 

1996). However, database searching alone is 

unlikely to provide sufficient markers in plant 

species for mapping or breeding applications. The 

application of cross-species transfer of 

microsatellites was difficult to predict (Brown et al. 

1996). The taxonomic distance of the species of 

interest and conservation of the flanking sequence 

determines whether the correct region is amplified 

and how much is the variability in the 

microsatellites. The reaction conditions are often 

need to be optimized the products sequenced to 

verify the presence of the microsatellite region. 

Microsatellites have been transferred between 

closely related plant species, but there is not much 

information is available between the genera. 

 

Library construction strategy for 

development of SSRs 
 

Non-enriched libraries 
 

This strategy is usually used for newly analyzed 

species. The following steps are involved in 

generating SSR markers from a library: 

Isolation of DNA 

 

Digestion with the appropriate restriction enzymes 

Separation by electrophoresis and selection of 

fragments between 300 and 1000 bp Ligation of 

restricted fragments to the vector Hybridisation with 

probes composed of several repeats Sequencing of 

positive clones Designing of primers complementary 

to both flanking regions Although such an approach 

has been applied in many cases (Roder et al. 1995; 

Saal and Wricke. 1999; Ashkenazi et al. 2001; 

Brown et al. 1996; Panaud et al. 1996; Taramino et 

al. 1996) a number of disadvantages seems to be 

common for research starting from library 

construction, especially in species with large 

genomes. The most often-admitted problems are: the 

low effectiveness and specificity of hybridization as 

well as the presence of one-side flanks in sequenced 

fragments. In rye, Saal and Wricke (1996) 

sequenced seventy-four (40.7%) out of 182 positive 

clones, and the primer pairs were designed for 57 

(31.3%) of them. Only 27 primer pairs resulted in 

specific SSR markers, of which, 20 were mapped. 

From this calculation comes the final efficiency of 

about 10%. The sequencing of 1739 positive clones 

in wheat (511 for GT and 1228 for GA motifs) 

resulted in obtaining 70 primer pairs, among them 

only 25 (less than 2%) gave amplified fragments 

with the expected length (Roder et al. 1995).  In 

order to increase the amount of successful 

sequencing, positive clones can be pre-screened for 

insert length, repeat position and orientation by the 

use of an anchor PCR technique described by 

Rafalski et al. 1996. In this technique, a set of PCR 

reactions with a combination of four primers (two 

vector and two degenerated primers complementary 

to the repeat) is carried out. Clones containing 

microsatellites positioned either too close or too far 

from the cloning site are not amplified. 

 

Enriched libraries are the rich source of SSR 

markers 
 

Different enrichment methods have been developed 

to increase the efficiency of microsatellite loci 
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isolation from genomic DNA libraries. Recently, the 

attractiveness of “enriched protocols” has increased 

notably, especially in plants Zane et al. (2003). A 

standard method for the isolation of plant 

microsatellite loci involves screening 

colonies/plaque with oligonucleotide probes 

complementary to microsatellite repeats. Enrichment 

by primer extention, enrichment by hybridization 

and enrichment by screening random amplified 

polymorphic DNA (RAPD) profiles are other 

approaches for enrichment. Different microsatellite 

enrichment methods have been given in the table 2. 

 

The most popular method of enriched library 

construction is selective hybridization of DNA 

fragments using streptavidin-coated magnetic beads 

or nylon membranes. The procedure of the 

construction of enriched libraries using streptavidin-

coated magnetic beads or nylon membranes 

comprises the following steps: 

 DNA digestion and ligation of the resulting 

fragments to double-stranded adaptors. 

 Their hybridization to biotinylated microsatellite 

probes, followed by binding to streptavidin-coated 

magnetic beads. 

 The elution of the DNA fragments from the beads, 

and PCR amplification with primers 

complementary to the adaptor sequence. 

 Cloning of the amplified products into the vector. 

 Transformation of Escherichia coli. 

 Sequencing of the positive clones. 

Such an enrichment method has been successfully 

applied to plants by several authors (Fischer et al. 

1998; Hamilton et al. 1999; Milbourne et al. 1998; 

Prochazka et al. 1996)  with minor modifications, 

such as additional screenings for the presence of 

SSRs or the use of l phagemids instead of E. coli. In 

spite of the sufficient level of progress in the 

efficiency of positive clone isolation, the procedure 

employing magnetic beads allows enrichment in a 

single or, in the best case, several SSR motifs. This 

problem can be solved by using Nylon membranes 

with many bound microsatellite oligonucleotides, as 

proposed by Edwards et al. (1996). 

 

Other strategies without library construction 

 

The construction of genomic library for the 

development of SSR is time consuming process and 

it usual takes up to one month. To avoid this 

problem, several procedures without library 

construction have been developed. One group of 

protocols is based on the fact that RAPD fragments 

contain SSRs more frequently than random genomic 

clones. This procedure starts with a random PCR 

amplification (either with RAPD starters or 

microsatelliteanchored random primers) followed 

either by Southern hybridization of PCR products 

with SSR probes and selective cloning of positive 

bands, or by cloning and screening all the products 

(Lench et al. 1996; Cifarelli et al. 1995; Lunt et al. 

1999). An interesting “nonlibrary” protocol based on 

the same idea was proposed by Zane et al. (2003). In 

this protocol, called FIASCO (Fast Isolation by 

AFLP of Sequences Containing repeats), products 

derived in a fast and efficient digestion-ligation 

reaction of AFLP were hybridized with biotinylated 

probes, followed by selective capturing of 

microsatellites with streptavidin-coated beads. The 

usefulness of SSR markers for numerous purposes 

has been well documented for plants; among such 

purposes, the construction of molecular maps has a 

dominant position (Roder et al. 1995; Saal and 

Wricke (1996); Taramino et al. 1996; Becker et al. 

1995; De la Rosa. 2003; Hackenberger et al. 2003;  
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Table 2 Summary of microsatellite enrichment method (Adapted from Maguire, T.L. 2001). 
 

Enrichment Method  Level of enrichment Reference 

Enrichment by Primer extension 

Microsatellite oligonucleotide 50-fold compared with un-nriched 

24 positive clones sequenced,  

all contained microsatellites 

Ostander et al. (1992) 

 

Paetku (1999) 

Degenerate oligonucleotide 15 positive clones sequenced,  
13 contained microsatellites 

19 positive clones sequenced,  

all contained microsatellites 

Fisher et a.l (1996) 
 

 

Koblizkova et al. (1998) 

Enrichment by hybridization 

Streptavidin-coated  

magnetic beads 

48 positive clones sequenced,  

29 contained microsatellites 

9 positive clones sequenced, 5 contained  

Microsatellites 207 positive clones  

sequenced, 180 contained microsatellites 

20% positive clones compared with  

un-enriched with no detectable positive clones 

12 positive clones sequenced,  
8 contained microsatellites 

120 positive clones sequenced,  

all contained microsatellites 

Fisher and Bachmann (1998) 

 

Prochazka (1996) 

 

 

 

 

 
Kijas et al. (1994) 

 

 

 

Connel et al. (1998) 

Hamilton et al (1999) 

Nylon membranes 50-70% clones randomly sequenced  

contained microsatellites 

Edwards et al. (1996) 

Enrichment by screening 

RAPD profiles 

30 positive clones sequenced,  

21 contained microsatellites 

14 positive clones sequenced,  
12 contained microsatellites 

Ueno et al. (1999) 

 

 
Lunt et al (1999) 

 

Roder et al. 1998; Tang et al. 2002). Expressed 

sequence tag derived microsatellite loci were 

detected and mapped in many species, such as barley 

(De la Rosa et al. 2003), alfalfa (Mahalakshmi et al. 

2002), maize (Senior et al. 1993), and rice 

(Temnykh et al. 2000). The SSRs are abundant, 

ubiquitous and hypervariable in nature; this attracted 

the attention of breeders who could utilize them for 

MAS, a modern tool in breeding. Masojc et al. 2002 

listed four major strategies for finding a molecular 

marker tightly linked to a target gene of agronomic 

importance. The first approach uses NILs which are 

differentiated only by the allelic sets in the gene of 

interest and in the adjacent chromosomal region. The 

second one involves BSA. The third one comprises 

the identification of QTLs, and the last strategy 

involves computer databases. In the literature, there 

are several examples of applying SSRs for these  

 

purposes. Recently, by means of the BSA strategy, 

SSR markers closely linked to genes conferring 

resistance against sugarcane mosaic virus in maize – 

Scmv1 and Scmv2 (Duble et al. 2003), and leaf rust 

in barley – Rph5 (Mammadov et al. 2003) were 

identified. Zhou et al. 2003 showed that the MAS 

for the major scab resistance QTL with the SSR 

markers combined with phenotypic selection was 

much more effective than selection based only on 

phenotypic evaluation in an early generation. The 

authors identified markers linked to the major QTL 

on chromosome 3BS in the original mapping 

population; these were closely associated with scab 

resistance. Another interesting application of SSRs 

in rice breeding was described by Liu and Wu 1998. 

The authors showed that it is possible to predict 

heterosis and hybrid performance by the detection of 

the chromosomal regions influencing yield. 

J of Biotech & Crop Sci (2015) 4(4): 64-82 
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However, the use of SSR markers is still relatively 

expensive for application on a large scale in 

breeding programs. Because of the possibility to 

detect several alleles at a high frequency, SSRs 

turned out to be an ideal tool for identifying 

individuals and for establishing genetic diversity 

between them. It was well demonstrated in the study 

by Prasad et al.2000, who examined 55 elite wheat 

genotypes with SSR markers, and found that a set of 

only 12 primer pairs allowed a maximum of 48 

genotypes to be distinguished. In the study published 

by Ashkenazi et al.2001, two SSR markers were 

sufficient to discriminate between 12 potato 

cultivars. SSRs have also been applied in 

phylogenetic investigations for the construction of 

evolutionary trees, in, among other species, melon 

(Monforte et al.  2003) and barley (Provan et al.  

1999). Yaish and Perez de la Vega 2003 were the 

first to identify (GA)n microsatellite containing loci 

linked to a putative MADS-box gene (PVMADS) in 

the common bean. Afterwards, the authors 

constructed an un-rooted phylogenetic tree of the 

MADS-box genes of Arabidopsis and the common 

bean, which made it possible to show that the 

PVMADS gene is closely related to the AGL2 group 

of Arabidopsis, involved in floral morphogenesis. It 

was demonstrated that microsatellites in plants could 

even be up to ten-fold more variable than other 

markers; thus, they are highly recommended for 

genetic diversity analysis. Russell et al. 1997 

compared the level of polymorphism in barley as 

detected by four types of markers: RFLPs, AFLPs, 

SSRs and RAPDs. Although all four assays were 

able to detect the polymorphism between 18 

cultivated barley accessions, the similarity index was 

the lowest in the case of SSRs for both the spring 

and winter types while the diversity index calculated 

based on SSR data was similar to that obtained for 

AFLPs. The high level of DNA polymorphism of 

SSRs makes them especially useful for self-

pollinated species like wheat (Roder et al. 199)5 or 

barley (Becker et al. 1995). However, they have also 

been used successfully in open-pollinated plants as 

rye (Saal and Wricke 1999) or maize (Taramino et 

al. 1996). 

  

ISSR Markers 

 

Microsatellites are usually more or less 

proportionally dispersed in the genome. However, 

regions with a greater abundance of these sequences 

have been found and are named "SSR hot spots" 

(Bornet et al. 2002a; Bornet et al.  2002 b; 

Zietkiewicz et al.  1994). Such regions can serve as a 

source of ISSR markers. The ISSR technology is 

based on the amplification of regions (100-3000 bp) 

between inversely oriented closely spaced 

microsatellites (Zietkiewicz et al.  1994). Single 

primers (16-18 bp) consisting of several simple 

sequence repeats used for an amplification of these 

regions can be based on any SRR motif and be 5’ or 

3’ anchored by 2-4 (usually) arbitrary selective 

nucleotides. However, nonanchored primers have 

also been used (Bornet et al.  2002b) . The resulting 

PCR products are anonymous SSR loci. ISSRs 

usually amplify 25 to 50 products in one reaction. 

The number of bands produced may be negatively 

correlated with the number of nucleotides in the 

repeat unit of the motif, as shown by Nagaraju et al. 

(2002), who investigated the genetic relationship 

between Basmati and non-Basmati rice varieties. 

The major advantage of this method is the fact that it 

does not require a time-consuming (and expensive) 

step of genomic (or other) library construction. In 

spite of the fact that ISSRs are mostly inherited as 

dominant or rarely as codominant genetic markers 

(if the length of the intervening space between the 

microsatellites has changed) and are random-type 

markers, they are thought to be highly useful for 

many different purposes. This has been confirmed in 

numerous studies. They seem to be especially 

suitable for phylogenetic studies, the evaluation of 

genetic diversity and cultivar identification 

(Zietkiewicz et al.  1994; Nagaraju et al. 2002; Blair 

et al. 1999; Cavan et al.  2000; Fang et al. 1997; 

Gupta et al. 1994; Jain et al. 1999; Korbin et al. 

2002; Raina et al.  2001; Wolfe 1998). The 
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simplicity of ISSR markers predetermines them for 

gene tagging. An excellent example was reported on 

by Ammiraju et al. (2001), who tested the 

association of ISSRs with seed size in wheat. The 

authors found three markers for low seed weight and 

four markers for high seed weight, and identified 

QTL-associated ISSRs on three chromosomes. Other 

examples of gene tagging by means of ISSRs are the 

identification of a tight linkage between a marker 

and nuclear restorer gene in rice (Agaki et al. 1996), 

a gene controlling Fusarium wilt resistance in 

chickpea (Ratnaparkhe et al. 1998), dominant allele 

Ns confering resistance to Potato virus S in potato 

(Marczewski et al. 2002), and the Fgr major locus 

modulating the fructose to glucose ratio in mature 

tomato fruit (Levin et al. 2000). ISSR marker also 

turned out to be highly useful for monitoring 

somaclonal variation (Albani et al. 1998; Leroy and 

Leon 2000; Rostiana et al. 1999). Leroy and Leon 

2000 described the application of the ISSR 

technique for the detection of differences between 

the hypocotyl-derived calli and leaves of 

cauliflower. They found polymorphic bands in callus 

tissues when using primers (GACA)4 and (GATA)4; 

one of the sequenced bands showed a high similarity 

to the gene coding for protein kinase of Arabidopsis 

thaliana, which is involved in the regulation of cell 

proliferation. The authors suggested the ISSR 

technique to be a highly useful tool for the 

investigation of genetic instabilities at early stages of 

in vitro culture. Another benefit of ISSR markers is 

the possibility to study SSR abundance and 

distribution in genomes. The bands produced by an 

ISSR primer with a given microsatellite repeat 

should reflect the relative frequency of that motif in 

a given genome. This approach was reported by Van 

der Nest et al. 2000 who used an inter-simple 

sequence repeat technique for an access of 

microsatellite-rich regions in Eucalyptus grandis. 

The amplification of the microsatellite-rich regions 

using typical ISSR arbitrary primers was followed 

by the cloning and sequencing of the PCR products. 

This made it possible to design a set of SRR primers 

amplifying mono-, di-, tri-, hexa-and nona-

nucleotide repeats, which were also able to generate 

the corresponding microsatellite loci from other 

Eucalyptus species (E. grandis, E. nitens, E. 

globulus, E. camaldulensis and E. urophylla). ISSRs 

are considered to be highly informative. In rice, a 

higher percentage of polymorphic bands were 

produced with the ISSR technique than with AFLP 

(Blair et al.  1999). Therefore, the ISSRs were more 

suitable to discriminate between varieties and 

showed a lower similarity than AFLP – 55.5% vs. 

73.3%. A similar conclusion was drawn by Nagaoka 

and Ogihara 1997; Korbin et al. 2002 and Galvan et 

al. 2003, who respectively observed that ISSRs were 

more informative than RAPDs in wheat, fruit plants 

(strawberry, apple and Ribes species) and the 

common bean for the evaluation of genetic diversity.  

 

SAMPL markers 

 

SAMPL, another microsatellite-based marker 

system, is a modification of the AFLP technique 

(Morgante et al.  1994; Vos et al. 1995). The same 

template is used as in the case of conventional AFLP  

restriction fragments resulting from the digestion of 

genomic DNA with two endonucleases, ligated with 

adaptors and preamplified using primers designed on 

the basis of the synthetic adaptor plus the restriction 

site and carrying one selective base. The selective 

amplification is achieved using one of the standard 

AFLP primers with a SAMPL primer. The design of 

the SAMPL primer used in the original procedure 

was based only on compound SSR sequences 

consisting of two different adjacent dinucleotide 

repeats, i.e. G(TG)4(AG)4A. Later protocols (Paglia 

et al. 1998; Vivek et al. 1999) introduced primers 

complementary to microsatellites and anchored at 

the 5’end with a non microsatellite sequence. Such 

primers allow the amplification of any type of repeat 

structure (not only compound microsatellites) and 

can be extended to different types of tri-, tetra- and 

pentanucleotide repeats. 3’-achored SAMPL primers 

also proved to be useful in producing clear and 

reproducible banding profiles, as shown for rye 

(Bolibok et al. 2003). Because SAMPL analysis 

allows the amplification of microsatellite regions 
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without any previous information on microsatellite 

flankig sequences and has a high multiplex ratio, it 

is considered one of the most efficient of all the 

molecular marker systems known so far (Roy et al.  

2002). One of the problems occuring while utilizing 

multiplex fingerprinting techniques is the high 

complexity of amplification profiles, especially in 

the case of plants with a large genome size and a 

high proportion of repetitive DNA. Several ways of 

dealing with this problem are reported on in 

published SAMPL protocols. One of them is a 

removal of restriction fragments with identical 

adapters at both ends. It can be achieved via affinity 

capture using streptavidin-coated magnetic beads – 

as was done in lettuce (Witsenboer et al.  1997) or 

by ligation of a special type of adapters and 

amplification using suppression PCR technology 

(Paglia et al. 1998). To date, the SAMPL marker 

system has been established for only a few plant 

species, namely carrot (Vivek et al. 1999), rye 

(Bolibok et al. 2003), wheat (Roy et al. 2002), 

lettuce (Witsenboer et al. 1997), conifer (Paglia et 

al. 1998), chicory (De Simone et al. 1997), neem 

(Singh et al.  2002), sweet potato (Tseng et al. 2002) 

and cowpea (Tosti and Negri. 2002), where it was 

successfully utilized for studies involving genetic 

diversity, genotype identification, gene tagging and 

linkage mapping.. As an arbitary multilocus 

fingerprintig technique, SAMPL also turned out to 

be a valuable tool for constructing genetic linkage 

maps, especially for species for which no or only 

limited previous DNA sequence information was 

available, and it was used for this purpose on chicory 

(De Simone et al. 1997), conifer (Paglia et al. 1998) 

and lettuce (Witsenboer et al. 1997). A summary of 

the different applications of microsatellite-based 

markers in plants is given in Tab. 2. However, each 

type of microsatellite-based markers shows a set of 

advantages and disadvantages, such as the mode of 

inheritance, level of informativity and 

reproducibility, or procedural complicacy, along 

with economical aspects like costs and the time 

required to produce the final result. Tab. 3 presents 

the main features of the above-characterized 

microsatellite- based molecular markers. 

 

There are two main approaches for the isolation of 

microsatellite loci from genomic libraries. One 

method is to screen a large insert genomic library 

with an end labeled microsatellite oligonucleotide 

probe. The hybridized clones are purified and 

divided into subclones. Selected clones are then 

sequenced and flanking region of microsatellite 

repeats are used to design PCR primers. Many blot 

hybridizations requirement and sequencing of large 

subclones is the drawback of this approach. The 

alternative is to produce small insert genomic 

libraries constructed in a plasmid or phage vector. 

These libraries are suitable for sequencing of entire 

insert. They can also be highly enriched for the 

desired microsatellite repeats using enrichment 

strategies (Edwars et al. 1996, Maguire et al. 2000). 
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Table 3 The application of microsatellite-based markers for different approaches in chosen plant species 
(Rakoczy-Trojanowska and Bolibok. 2004). 
 

Type of 

microsatellite 
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Plant species 

 

Application 
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Table 3 A comparisons of the main features of microsatellite-based markers. 
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